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Abstract 
Phytic acid consists of an inositol ring with six phosphate ester bonds. It is the primary phosphate storage 

compound in plant seeds. Phytic acid can bind with di- and tri-valent minerals and form very stable complexes, 

decreasing the availability of phytate phosphate to non-ruminant livestock. The salt form of phytic acid, phytate, also 

binds non-selectively to proteins and inhibits enzymes including trypsin and α-amylase, thus reducing protein 

digestibility in monogastric animals like pigs, poultry and fish. These protein-mineral-phytate complexes are insoluble. 

Phytase enzyme can reduce the antinutritional effect of phytate and improve the digestion of phosphorous, di- and tri-

valent minerals and amino acids, as well as reduce the inorganic phosphate excretion to the environment. Phytase can 

catalyse the release of six phosphates from phytic acid. It is widely used as a feed supplement for monogastric animals 

in developed countries. In case of developing countries some large feed companies import phytase enzymes from 

developed countries to add their feed and sell at a high value. The terminal small farmers are unable to purchase high-

value feed for their farms. Here we discuss a simple method to get phytase enzyme for feed additive. This methodology 

is applicable to the terminal farmers of developing countries. The supplemented phytase will increase phosphate 

uptake, mineral and nutrient absorption, reduce malnutrition, and will enhance animal growth and productivity. 
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Introduction 
Cereal food is the main ingredient of monogastric and agastric animal feed. Feed for monogastric animals is 

formulated from legume and cereal seeds, mainly corn and soybean meal, which represents about 70% of the pig diet 

and substantially contributes to supply their energy, protein, mineral and vitamin needs (Pires et al., 2019). Phosphorus 

is an essential mineral in animal feeds. Phytic acid is a main reservoir of phosphorus (p) in plants and contributes to 

about 80% of the total P in cereal seeds (Vashishth et al., 2017). The phosphorus fraction stored as phytate range from 

30% in roots up to 80% in seeds and cereals (Table 1). About 1-5% weight of oilseeds, legumes, nuts, pollen and grains 

is phytic acid, which chelates with divalent or trivalent metal cations (Fe+2 , Fe+3, Ca+2, Mg+2, Zn+2, Cu+2). Due to the 

pronounced negative charge, phytic acid forms a complex with cation, amino acids (histidine), starch, proteins and 

enzymes, and disrupts their ability, solubility resulting bioavailability (Selle et al., 2006; Joudaki et al., 2023). Phytate 

is known to form complexes with proteins under both acidic and alkaline pH conditions (Vashishth et al., 2017). The 

diet of domestic farm animals is based on plant sources, grains and oilseeds, and therefore contains significant amounts 

of phytate that reduce the mineral uptake by monogastric animals (Singh, 2014). The phytase are a group of enzymes 

that hydrolyze the phospho-monoester bonds of phytic acid (Jatuwong et al., 2020). It has been long established that 

some feed ingredients have endogenous phytase activity (Ravindran et al.,1995). But their activities are not enough. 

Wheat, wheat bran, barley, rye contain high levels of phytase activity, whereas corn, soybean meal, peanut meal, 

sorghum, and cassava roots contain little or none of the enzyme (Table 2). The digestive system of monogastric 

animals, like humans, lacks the enzyme phytase, and therefore the accumulated phytate prevents the uptake of minerals 

from the animal diet (Gessler et al., 2018). Moreover, these non-absorbed minerals are released into the environment 

in large quantities through animal faeces, leading to environmental pollution (Joudaki et al., 2023). Reducing the 

amount of phytic acid by chemical and physical methods affects other food constituents, and generally reduces the 

nutritional value of food products (Joudaki et al., 2023). The use of phytase enzymes in feed as additive to reduce 

phytic acid in food can overcome these problems (Jongbloed et al 2013; Butani& Parnekar 2015). Phytase enzymes 

release mineral phosphate (P) reducing the anti-nutritional properties and preventing protein or enzyme complex 

formation with phytic acid, and also the chelation of metal ions (Fig.1). Therefore, microbial phytases extracted from 

yeasts, fungi, or bacteria are principally used for commercial purposes (Rizwanuddin et al., 2023). The higher cost of 

this enzyme limits their use in developing countries. The importation cost also raises the expenditure of the feed cost. 

Aspergillus niger is a known fungus with probiotic properties that contains several bioactive compounds and enzymes, 

such as tannase, phytase, α-galactosidase, L-asparaginase, xylanase, α-amylase, proteases, and cellulose, which 

provide benefits to poultry animals (Hong et al., 2004; Saleh et al., 2017). 

In this review, we search for a low-cost phytase production platform and straightforward methodology to 

enhance feed nutrition for small-scale farmers. Here we suggest whole solid-state fermented media including 

Aspergillus niger, the probiotic, and its phytase enzyme as feed additive. This review also provides the production of 

low-cost phytase using simple instruments to improve feed nutrition for small-scale terminal farmers in developing 

countries. This also generates an awareness of phosphorous pollution in a bioeconomy. 

Fig 1. The degradation of phytate complex by phytase enzyme 
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Table 1. Phytate phosphorus contents of feed ingredients (Ravindran V. et al., 1995) 

Ingredient   Phytate phosphorus, g/100g DM  Phytate P, as % of total P 

Cereals   

Corn (Zea mays)                                                                                                                                                 0.24 72 

Barley (Hordeum vulgare)                                                                                           0.27 64 

Wheat (Triticum aestivum)                                                                                          0.27 69 

Oats (Avena sativa)                                                                                                      0.29 67 

Sorghum (Sorghum vulgare)                                                                                        0.24 66 

Foxtail millet (Setaria italica)                                                                                     0.19 70 

Finger millet (Eleusine coracana)                            0.14 58 

Rice (Oryza sativa), unpolished             0.27 77 

Rice, polished 0.09 51 

Cereal by-products   

Rice bran 1.31 80 

Wheat bran 0.92 71 

Rice polishings 2.42 89 

Roots and tubers   

Cassava (Manihot esculenta) root meal 0.04 28 

Sweet potato (Ipomea batatas) tuber meal 0.05 24 

Taro (Colocasia esculenta) corn meal  0.09 24 

Grain legumes   

Field peas (Pisum sativum)  0.24 50 

Cowpeas (Vigna unguiculata)  0.26 79 

Green gram (Vigna radiata)   0.22 63 

Pigeon peas (Cajanus cajan)  0.24 75 

Chickpeas (Cicer arietinum)  0.21 51 

Oilseed meals   

Soybean (Glycine max) meal  0.39 60 

Cottonseed (Gossypium spp0.) meal 0.84 70 

Peanut (Arachis hypogaea) meal   0.48 80 

Rapeseed (Brassica napus) mea 0.70 59 

Coconut (Cocos nucifera) meal 0.29 49 

Sesame (Sesamum indicum) meal    1.18 81 

 

Table 2. Phytase activity of some feed ingredients (Ravindran V. et al., 1995) 

Ingredient Phytase activity, units/kga 

Cereals and by-products  

Wheat 1193  

Barley 582  

Rye 5130  

Corn 15 

Sorghum  24  

Wheat bran 2957 

Rice bran 122 

Roots and tubers   

Cassava roots  6  

Sweet potato tubers 26 

Grain legumes  

Field peas 116 

Oilseed meals  

Soybean meal, 48% 8  

Peanut meal 3 

Rapeseed meal 16 

Miscellaneous  

Alfalfa meal, dehydrated 60 

Soybean hulls 99 
aOne unit is defined as the amount of phytase which liberates inorganic phosphorus from a 0.0015M sodium phytate solution at a rate of 1 

μmol/min at pH 5.5 and 37°C. 
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Present perspective 

Once upon a time, the village economy like Bangladesh depended only on rice planting.  Nowadays they are 

turning to livestock cultivation as the protein consumption rate rising day by day rather than carbohydrate. Therefore, 

so many small poultry and fish farms are rising daily. Most of them cannot buy high-quality feed due to its higher cost. 

They use an indigenous feed mixture. Rice bran, wheat bran, intact rice, broken rice, broken maize, rapeseed oil cake, 

low-cost pulse etc. used for poultry and fish feed. As a result, most of the poultry suffer from malnutrition. They lose 

their weight and lay a lower number of eggs. The eggshell becomes very thin and the other hens eat the egg instantly. 

Some big feed companies buy phytase from developed countries and add it to their feed. Therefore, their feed contains 

a high nutrient value and is sold at a higher price. Small farmers are unable to buy such feed. Now they are struggling 

for survival.     

Solid state fermentation 

Solid-state fermentation has emerged as a potential technology for the production of microbial products such 

as feed, fuel, food, industrial chemicals and pharmaceutical products (Pandey, A., 2003). It is simpler, the moisture 

content is lower, and the protein production yield is higher. Filtration is generally unnecessary as the product is 

concentrated and may be used directly. Aseptic conditions need not follow for all time due to less risk of contamination. 

Temperature, pH, aeration, and agitation control are not required for tropical and sub-tropical countries. Simple cotton 

cloth and water are required to control incubation room humidity. This process can be operated by less skilled people 

and by very simple instruments. The capital investment and energy expenditure are also very low as compared with 

submerged culture.  

Strain Selection  

Very few organisms are suitable for solid-state fermentation. The microbiological process of solid-state 

fermentation has generated great interest in recent years due to the numerous advantages over submerged fermentation. 

Filamentous fungi are mostly used in such fermentation. Industrial valuable Aspergillus niger would be the best strain 

for enzyme production. 

Strain Screening 

A potential product-yielding strain should be screened first for industrial cultivation. Screening strategies are 

divided into two basic types: non-selective random screening, in which randomly picked isolates are tested for the 

desired qualities; and rational selection, a method based on prior knowledge of the metabolism and regulation pathways 

of microorganisms, so the identification is carried out in a targeted manner (Parekh et al., 2000; Heerd et al., 2014). 

Strain engineering 

This part should be done in a sophisticated laboratory by highly expert personnel. If it is not possible the 

natural isolate is enough for enzyme production. Microbial strain improvement for the overproduction of desired 

products has been the hallmark of all commercial fermentation processes. Successful development of improved strains 

requires a deep knowledge of physiology, metabolic pathway distribution and regulation procedures. Classical and 

genetic engineering are two approaches used for strain development. 

Classical strain improvement 

Classical strain improvement has long been regarded as the gold standard for fungal strain improvement in 

the industry because it can be applied even when there is limited knowledge about the genetic basis or biosynthetic 

pathways of the production organisms (Sonia et al., 2023). Organisms obtained by classical mutagenesis are not subject 

to GMO legislation and can be used in the industry in the short-term (Cadière et al., 2011). Physical and chemical 

mutagenesis and screening of the high-secreting mutants provide suitable strains for specific industrial goals (Steensels 

et al., 2014), such as the overproduction of penicillin (Kardos and Demain, 2011; Barreiro, 2012), increased production 

of lignocellulolytic enzymes (Ribeiro, et al., 2013; Bischof, et al., 2016; Dillon, et al., 2006), lipase (Karanam and 

Medicherla, 2008), citric acid (Javed et al., 2010) and bioethanol (Mobini-Dehkordi, et al., 2008; Zhao et al., 2022). 

Strain improvement by random mutagenesis is a successful method, but it is mainly a trial-and-error process, 

which requires screening of large numbers of strains for the desired traits (Sonia et al, 2023). Random mutagenesis has 

been applied in a large number of fungal species for many industrial purposes, such as improved cellulase production 

in Aspergillus sp. (Vu et al., 2009), lipase production by Aspergillus japonicus (Karanam and Medicherla, 2008) or 

citric acid overproduction by the industrial workhorse Aspergillus niger (Lotfy, et al., 2007). Moreover, UV-derived 

mutations were reported in Aspergillus niger to increase Filter Paper activity (FPase) and carboxymethyl cellulase 

(CMCase) production (Irfan et al., 2011). 

Whole cell-directed adaptive evolution relies on the basic principles of genetic variation and subsequent strain 

selection. A microbial population is cultivated under a selective pressure for several generations to get desired traits. 

Natural selection optimizes the strain without requiring prior knowledge of genetic modification. Adaptive evolution 
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can also be combined with other methods such as random mutagenesis in order to generate more genetic diversity for 

selection (Steensels et al., 2014, Winkler and Kao, 2014). 

Protoplast fusion is the fusion between two cells with different genetic traits, which leads to a stable hybrid 

strain with the combination of the genetic traits of both parents. Protoplast fusion can be used to produce interspecific 

or even intergeneric hybrids (Verma et al., 2008). Strains resulting from protoplast fusion of T. reesei and A. niger 

showed a three-flod increase of citric acid production in comparison with the parent A. niger stran (El-Bondkly, 2006). 

Genome shuffling is time-consuming, but its application does not require expensive facilities (Gong et al., 2009). It is 

also recombination between multiple parents of each generation and several rounds of genome fusion. As a result, the 

final improved strains inherit the genetic traits from multiple initial strains (Leja, 2011). 

Genetic regulation and metabolic pathway engineering 

The cell growth and catabolic rates are modulated by the multi-level regulation machinery consisting of gene 

expression (transcriptional regulation), post-transcriptional regulation, translation, and post-translational regulation for 

ultimately modulating the metabolic fluxes (or enzymatic reaction rates) (Shimizu and Matsuoka, 2018). The main 

metabolism is primarily modulated for energy generation (catabolism) and biomass synthesis (anabolism), where such 

regulation system may be constrained by the more important upper regulation systems (including oxidative stress 

regulation) in the hierarchical regulation system for the cell survival (Shimizu and Matsuoka, 2019). The metabolic 

intermediates of the central carbon metabolism (CCM) must be converted to monomers such as nucleotides, amino 

acids, and lipids for biomass synthesis (Shimizu and Matsuoka, 2022). The engineer should know the ins and outs of 

cellular metabolism based on environmental stimuli. The target pathway should be optimized by cutting the branch 

pathways. Genetic engineering renders a higher level of strain construction. Over the last decades, GMOs have 

revolutionized many fields, including medicine, agriculture, food and pharmaceutical industries (Hug, 2008). 

Metabolic pathway engineering is applied for the improvement of the desired metabolite through the modification of 

specific pathways by insertion or deletion of genes. Metabolic engineering is considered as a combination of 

multidisciplinary subjects built on principles from chemical engineering, computational sciences, biochemistry and 

molecular biology (Yang, et al., 1998). Agrobacterium tumefaciens, a soil-dwelling bacterium can infect plants that 

induce tumors. It has been successfully applied in a range of filamentous fungi, such as the economically important 

Aspergillus sp. (Meyer et al., 2003; De Groot, et al., 1998).  

Genetic engineering by electroporation 

Electroporation is a fast and efficient transformation method that can be directly applied to both sporulating 

and non-sporulating fungal species (Chakraborty et al., 1991). Purified DNA fragments containing a target gene with 

a marker can be inserted into the cell by electric pulse and later the transformed cell can be selected in a specific media. 

Electroporation-mediated transformation has been applied in several fungal species such as N. crassa, Penicillium 

urticae (Chakraborty et al., 1991), Pseudogymnoascus verrucosus (Diaz et al., 2019), Monascus purpureus (Lakrod et 

al., 2003) or T. harzianum (Wang et al., 2022), and in some other filamentous fungi of industrial relevance such as A. 

niger (Ozeki et al., 1994), A. oryzae (Chakraborty et al., 1991), or T. reesei (Benocci et al., 2018). 

CRISPR/Cas9 genome editing  

CRISPR/Cas9 is a gene editing technology which turns on or off genes in cells and organisms rapidly and 

cheaply. The CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 (CRISPR-associated nuclease 

9) technology has dramatically changed the field of genome engineering since its first discovery in bacteria and archaea 

(Jinek et al., 2012). The first application of the CRISPR/Cas9 technology in filamentous fungi was in the industrially 

relevant T. reesei (Liu et al., 2015) and in six different Aspergillus species, including the industrial workhorse A. niger 

(Nødvig et al., 2015). Nowadays, the CRISPR/Cas system enables the genetic improvement of a wide variety of 

filamentous fungal species, including P. oryzae (Arazoe et al., 2015), N. crassa (Matsu-Ura et al., 2015), A. oryzae 

(Katayama et al., 2016), Aspergillus fumigatus (Zhang et al., 2016), P. chrysogenum (Pohl et al., 2016), Alternaria 

alternate (Wenderoth et al., 2016), Beauveria bassiana (Chen et al., 2017), F.oxysporum (Wang et al., 2018), Fusarium 

fujikuroi (Shi et al., 2019), A. niger (Kun et al., 2020), Penicillium subrubescens (Salazar-Cerezo et al., 2020), P. 

expansum, P. digitatum (Garrigues et al., 2022) and the polykaryotic industrial fungus Monascus purpureus (Liu et 

al., 2020), among others.  

Droplet-based microfluidics technology 

Recently, droplet-based microfluidics technology has allowed major advances for the screening of 

microorganisms by significantly increasing the throughput and enlarging the range of systems that can be selected 

(Beneyton et al., 2016). The platform allowed (i) compartmentalization of single spores in 10 nl droplets, (ii) 

germination and mycelium growth and (iii) high-throughput sorting of fungi based on enzymatic activity (Beneyton et 

al., 2016). 
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Cost-effective Indigenous substrate Selection 

Raw materials play an important role in the production of industrial products. Substrate should be available 

and at a low cost for cultivating desired organisms. Wheat bran, rice bran, soya bean meal, chickpea coarse powder, 

corn steep powder and urea, as a nitrogen source, would be the best selection for cultivation. Potato dextrose agar and 

broth are usually used for seed culture cultivation. 

Cost-effective Industrial Production Method 

Pure culture of Aspergillus niger would be cultivated in submerged fermentation for seed culture. The main 

cultivation would be solid-state fermentation. The solid-state media contains 50% water. The sterilized rectangular 

Stainless Steel (SS) tray contains the final culture. The humidity of the incubation room would be 90%.  Wet muslin 

cloth inside the incubation room can maintain such types of moisture. The organism releases extracellular enzymes 

including phytase during the growth. The highest enzyme secretion time would be selected by checking the enzyme 

activity during the whole process. After the cultivation, the culture should dry for 48 hours at 60ºC. The enzyme activity 

should be checked at the final stage.  This simple method can be operated by any person.  

Inoculum Preparation   

The stock culture needs to be cultivated in Potato Dextrose Broth. The broth flask would be incubated at 30ºC 

for 48 hrs under a shaking incubator.  

Seed Preparation 

The seed media contains wheat bran, rice bran, peptone, corn steep liquor/powder, chickpea coarse powder, 

dextrose, calcium phosphate and phytic acid. The medium pH should be 4.5 adjusted with phosphoric acid. The 

cultivation time is 48 hrs at 30ºC with agitation at 200 RPM. 

Main fermentation at solid state 

The fermentation media contains wheat bran, soya grits, chickpea ground, calcium phosphate and urea 

(modified method of Awad et al., 2014; Sabu et al., 3002; Bala et al., 2014; Berikten and Kivanc, 2014; Buddhiwant 

et al., 2016; Bhavsar et al., 2011). The media should contain 50% moisture and humidity at 90%. A rectangular SS 

tray with a cover lid would be used for solid-state fermentation at 30ºC without shaking. The cultivation time should 

be optimized by checking the enzyme activity.  The wet muslin cloth should be placed in the incubation room to 

maintain 90% humidity. The whole culture should dry at 60ºC for 48 hrs or more and should be checked for phytase 

enzyme activity. Phosphoric acid (0.5%) powder needs to be mixed well before final packing. The whole culture should 

be added with the feed as the organism is probiotic for the animal. We did work on this procedure. We also checked 

enzyme activity and compared with best product of market. Our enzyme activity was better than the marketed product 

(data not published). 

Feeding Process 

During the feed pellet-making process the temperature reaches more than 90ºC. Most of the enzymes denature 

at this temperature. Thermo-stable phytase enzyme is desirable but rare. As a result, to maintain optimum phytase 

activity in feed it is needed to mix enzymes at the cooling stage of the feed-making process or during feeding instantly. 

The addition of microbial phytases to feed and food (up to 2200 FTU/kg, where 1 FTU is the activity of the enzyme 

which releases one micromolar orthophosphate from phytate per minute at pH 5.3) significantly enhances the release 

of phosphate and minerals from phytate (Kornegay 2001; Troesch et al., 2009). 

Continuous process improvement 

The enzyme activity needs to be checked with other company products available in the market. Strain and 

process development is a continuous process. Genetic engineering and biotechnology need to be applied to get more 

robust strains. The substrate selection and media composition as well as instrument optimization should be developed 

continuously. 

Conclusion 

Phytase supplementation to feed has become common practice in poultry and swine farms and made this 

enzyme to global sales in the feed sector (Sales at USD 580.56 million in 2023, Global market insights). Phytase 

reduces the chelating effect of phytate with the improvement of phosphorous utilization, increasing the production 

yield of either meat or egg. Major phytase research is the screening for thermo-stable enzymes. Very few phytases 

have been reported to have temperature stability. The fungal phytase from A. fumigatus was reported to withstand 

temperatures up to 100ºC over a period of 20 min (Pasamontes et al., 1997), but a later report from Ullah et al., 2000 

did not confirm these results (Haefner et al., 2005). A transgenic pig has been developed that produced the E. coli 

phytase in its saliva with an average of 2000-3000 U/ml (Golovan et al., 2001b). However, this direction might be 

limited by public acceptance.  

In this review, we discuss the enrichment of poultry feed adding supplemental phytase to enhance growth and 

reproduction. The production strategy of phytase enzyme will help the feed manufacturer to lower the feed price. As a 

consequence, the terminal farmers will able to purchase low-cost feed for their farm to survive.  
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